(12) United States Patent

Abbas et al.
(10) Patent No.: US 8,815,571 B2
(45) Date of Patent:

Aug. 26, 2014
(54) INCREASED FIBER HYDROLYSIS BY PROTEASE ADDITION
(75) Inventors: Charles A. Abbas, Champaign, IL (US); Wu-Li Bao, Champaign, IL (US)
(73) Assignee: Archer Daniels Midland Co., Decatur, IL (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 1371 days.
(21) Appl. No.: 12/247,499
(22) Filed:

Oct. 8, 2008
Prior Publication Data
US 2009/0098638 A1 Apr. 16, 2009

Related U.S. Application Data

(60) Provisional application No. 60/998,818, filed on Oct. 12, 2007.
(51) Int. Cl.

C13B 5/00	(2011.01)
C12N 9/62	(2006.01)
C12P 19/20	(2006.01)
C12P 19/02	(2006.01)
C12N 9/42	(2006.01)
C12N 9/50	(2006.01)
C12N 9/58	(2006.01)
C12P 7/10	(2006.01)

(52) U.S. Cl.

CPC C12P 19/02 (2013.01); C12P 19/20 (2013.01)
435/276; 435/277; 435/209; 435/219;
435/223; 435/225
(58) Field of Classification Search CPC \qquad A23K 1/06; C12P 7/10; C12P 19/02; C12P 19/20; C08L 97/02
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,737,365	A	4/1988	Meyer	
5,612,055	A	3/1997	Bedford et al.	
6,506,423	B2	1/2003	Drouillard et al.	
7,005,128	B1	2/2006	Bedford et al.	
7,494,675	B2*	2/2009	Abbas et al.	426/12
2004/0053373	A1	3/2004	Foody et al.	
2004/0202697	A1	10/2004	Beauchemin et al.	
2006/0154353	A1	7/2006	Duan et al.	
2006/0200877	A1	9/2006	Lanahan et al.	
2006/0251764	A1*	11/2006	Abbas et al.	$426 / 53$
2007/0037259	A1	2/2007	Hennessey et al.	
2007/0124833	A1	5/2007	Abad et al.	

FOREIGN PATENT DOCUMENTS
JP

$$
07031393 \mathrm{~A} * 2 / 1995
$$

OTHER PUBLICATIONS

Nebraska Ethanol Board "Ethanol Facts: Distillers Grains (DDG) and Corn Gluten Feed.", Apr. 3, 2005, retrieved online from URL:http://www.ne-ethanol.org/facts/ddg.htm, 1 page.* International Preliminary Report on Patentability for PCT/US08/ 79152 (Form PCT/IB/373 and PCT/ISA/237), 7 pages.

* cited by examiner

Primary Examiner - Jon P Weber
Assistant Examiner - Aaron J Kosar

(57)

ABSTRACT

Novel fiber processing methods and the products obtained therefrom are disclosed. Methods may include thermochemical and/or enzymatic hydrolysis of fiber feedstocks including distillers' dried grains, distillers' dried grains with solubles, soyhull, miscanthus and switchgrass. Enzymatic hydrolysis includes hydrolysis with cellulase, hemicellulase, and protease.

19 Claims, No Drawings

INCREASED FIBER HYDROLYSIS BY PROTEASE ADDITION

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Patent Application Ser. No. 60/998,818 filed Oct. 12, 2007. U.S. Patent Application Ser. No. 60/998,818 is incorporated by reference as if fully rewritten herein.

SEQUENCE LISTING

Following the Abstract of the Disclosure is set forth a paper copy of the SEQUENCE LISTING having SEQ ID NO:1 through SEQ ID NO:12. The SEQUENCE LISTING is incorporated by reference into this application.

BACKGROUND OF THE INVENTION

The following includes information that may be useful in understanding the present teachings. It is not an admission that any of the information provided herein is prior art, or material, to the presently described or claimed subject matter, or that any publication or document that is specifically or implicitly referenced is prior art.

FIELD OF THE INVENTION

The present teachings relate to, but are not limited to, the field of agricultural product production. Embodiments relate, for example, to methods for increasing the free glucose and other organic matter available from a fiber feedstock for fermentation and other applications.

BACKGROUND OF THE ART

A large quantity and variety of fiber feedstocks are available from agricultural processing operations. These fiber feedstocks (also called cellulosic feedstocks, biomass, or lignocellulosics) may be used, for example, to produce fuel, to produce industrial chemicals, or as other value-added food and feed products. A cellulosic feedstock is largely comprised of plant cell walls with cellulose, hemicellulose, lignin, and protein polymers as the primary constituents. The hydrolysis or breakdown of these feedstocks uses singly or a combination of enzymatic and thermochemical methods that result in the production of monomers and oligomers of carbohydrates. The hydrolyzed mix can serve as feedstocks to produce fuel, chemicals, and other products. Similar hydrolysis schemes are employed with most plant fibers that facilitate the release of glucose and other carbohydrates from fiber feedstocks.

Although attention has been paid to increasing the amount of glucose available from compositions such as uncooked granular starch (see, for example, U.S. Patent Application Publication No. 2006/0154354 A1, to Duan, et al.), lately more attention has been paid to methods for increasing the amount of usable carbohydrates obtained from readily available and inexpensive fiber feedstocks that contain no starch or minimal amounts of starch.

BRIEF SUMMARY OF THE INVENTION

Embodiments of the invention are typically directed to providing a method for increasing the amount of glucose and other carbohydrates obtained from hydrolysis of a low-starch
or no-starch fiber stream by hydrolyzing the fiber stream in the presence of protease and one or more of cellulase and hemicellulase.
Embodiments include a method for increasing the amount 5 of glucose and other organic matter released from a fiber feedstock, comprising reacting a fiber feedstock with a mixture of reactants comprising at least one protease and at least one member of the group consisting of cellulase and hemicellulase; and obtaining a reaction product from the fiber feedstock and the mixture of reactants comprising glucose. The amount of glucose in the reaction product (measured as a percentage of the fiber feedstock mass) is greater than the amount of glucose obtained from reaction of the fiber feedstock under the same conditions as the reaction including protease, but with at least one member selected from the group consisting of cellulase and hemicellulase and excluding protease. In some embodiments, the mixture of reactants used to increase the amount of glucose and other organic matter released from the fiber stream does not include amy20 lases.

Proteases are enzymes that have found a great number of uses in the industrial production of detergents, animal hide processing, meat tenderizing as well as in other food applications involving animal and plant materials. As a group they represent one of the largest classes of hydrolytic enzymes which posses a wide range of specificities towards amino acid sequences, different pH and temperature optima, and different amino acids at active sites with some (i.e. metallo-proteases) requiring cations such as zinc or iron for optimal 30 activity. Although a variety of proteases may be suitable for use in embodiments of the invention, typically an acid fungal protease is preferred. In one embodiment, the acid fungal protease has an amino acid sequence at least 95% identical to the amino acid sequence of SEQ ID NO: 1. In a further embodiment, the protease is selected from the group consisting of Aspergillus saitoi aspartic protease, or aspartic proteases from molds that are members of the genera of the Ascomycetous fungi represented by the genera Aspergillus, Mucor, Rhizopus, and Penicillium. In a typical embodiment, 0 the protease is Aspergillus saitoi aspartic protease, which has the amino acid sequence of SEQ ID NO: 1.

A variety of fiber feedstocks are suitable for use in embodiments of the invention. Fiber feedstocks include, but are not limited to, corn stover, corn gluten feed (CGF), distillers' 5 dried grains (DDG), distillers' dried grains with solubles (DDGS), switchgrass, miscanthus, soyhulls, wheat chaff, and wheat straw. In a typical embodiment, the fiber feedstock includes less than 20% starch by weight, less than 10% starch by weight, less than 5% starch by weight, or less than 1% 50 starch by weight. In another embodiment, the fiber feedstock includes no starch.

A number of cellulases are suitable for use in typical embodiments of the invention. These include, for example, but are not limited to CELLUCLAST® (a Novozyme prod55 uct), which is a $1,4-(1,3: 1,4)-\beta$-D-Glucan 4 -glucano-hydrolase produced by submerged fermentation of the fungus Trichoderma reesei, deposited as ATCC No. 26921; or GC-220 (a Genencor product). Other useful cellulases include those from T. reesei, other species of Trichoderma, species of 6 Aspergillus, species of Crysosporium, species of clostridium or cellulases from other bacterial and fungal species.

A variety of hemicellulases are suitable for use in typical embodiments of the invention, including, for example, but not limited to ULTRAFLO L (Novozyme), MULTIFECT 65 XYLANASE (Genencor), VISCOZYME L (Novozyme), and VISCOSTAR L (Dyadic). The reaction products may also include one or more of arabinose, xylose, galactose,
mannose, cellobiose, xylobiose, acetyl groups, phytosterols, phenolic compounds and oligomers of these compounds.

The amount of glucose in the reaction product (measured as a percentage of the fiber feedstock mass) following protease addition is greater than the amount of glucose obtained from reaction of the fiber feedstock without protease by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100%.

A further embodiment includes a method for obtaining a solid residue from the enzyme treated fiber for the production of biooil, comprising preparing a glucose-enriched fiber feedstock reaction product as described in other embodiments of the invention, and separating said reaction product into a solid hydrolyzed fiber fraction and a liquid fraction. This solid fraction may then be used as a fuel for biooil production. The process employed in the above treatment is often referred to as hydrotreating, or HT. It can be used with fiber streams that contain a fairly high level of moisture typically greater than 50% on a $\mathrm{wt} / \mathrm{wt}$ basis.

DETAILED DESCRIPTION OF THE INVENTION

The present teaching describes several different features and aspects of the invention with reference to various exemplary embodiments. It is understood, however, that the invention embraces numerous alternative embodiments, which may be accomplished by combining any of the different features and aspects described herein in any combination that one of ordinary skill in the art would find useful.

Processing methods as described herein may offer many advantages over the prior art. Of course, the scope of the invention is defined by the claims, and whether an embodiment is within that scope should not be limited by whether the method provides one or more of these advantages.

Current methods of processing corn, soy, wheat, barley, milo, canola, sunflower and other agricultural products to obtain useful commodities such as ethanol, animal feed, meals, and flours may also result in the production of a number of fiber byproducts. Processing methods include but are not limited to wet milling, dry milling, and modified wet milling. See Singh, et al. "Modified Dry Grind Ethanol Process," Ag. Eng. Dept., U. of Ill., UILU No. 2001-7021 (Jul. 18, 2001).

These byproducts, also referred to as fiber feedstocks, may include, for example, but are not limited to, corn stover, corn gluten feed, distillers' dried grains (DDG), distillers' dried grains with solubles (DDGS), switchgrass, soyhulls, wheat chaff, and wheat straw, palm fiber, bermuda grass, miscanthus and babassu. Fiber feedstocks do not necessarily need to be byproducts of any particular process to obtain some benefit from treatment according to embodiments presented herein. Fiber feedstocks may be pretreated chemically, thermally, and/or mechanically. More detail on fiber feedstocks, particularly corn fiber feedstocks, is found in U.S. Patent Application Publication No. 20060216396A1, to Abbas, et al., entitled "Corn Fiber Hulls as a Food Additive or Animal Feed," which is incorporated by reference herein.

Fiber feedstocks often benefit from further processing to produce more useful commodities, such as more readily digestible feed products, biofuel precursors, or industrial chemicals. Because typical byproducts are largely comprised of plant cell walls made of cellulose, hemicellulose, lignin, and proteins, their treatment typically includes enzymatic and/or thermochemical hydrolysis, which generates carbohydrate monomers and oligomers.

In some embodiments, the hydrolysis does not include any amylases. Amylases are glycoside hydrolase enzymes that break down starch into glucose molecules. Amylase is usually not necessary because the feedstocks have little or no starch. Alkaline treatment of the fiber feedstock while useful in extracting lignin and to break down ester linkages is not always necessary in a typical embodiment.

We have found that treatment of fiber feedstocks with protease prior to or in conjunction with enzymatic and/or thermochemical hydrolysis increases the amount of carbohydrate monomers and oligomers that may be obtained from the fiber feedstock, thereby increasing the commercial value of the fiber feedstock. Typically, the fiber feedstocks will either contain no starch prior to the protease treatment, or they will have only a small amount of starch. For example, the starch content of the fiber feedstock, by weight, may be less than 10%, less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, or less than 0.5%.

A typical process of the invention includes thermochemical hydrolysis of a fiber feedstock. This releases some pentoses from the fiber hemicellulose constituent and loosens the fiber structures, particularly that of any remaining cell wall components. Following thermochemical hydrolysis, the fiber feedstock is treated enzymatically to release glucose and other hexoses, as well as to release pentoses including D-xylose and L-arabinose. A typical enzymatic treatment is conducted using a blend of enzymes including one or more cellulases and one or more hemicellulases, though one skilled in the art will recognize that this blend may be modified depending on the initial content of the fiber feedstock and on the results of the thermochemical hydrolysis.

In addition to including cellulases and hemicellulases, an enzymatic treatment includes one or more proteases. Although applicants do not wish to be bound by theory, it is believed that the proteases degrade primarily the structural proteins that are cross-liked to other components of the fiber feedstock. In many cases the carbohydrate polymers are linked predominantly via N or O type linkages to the amino acids: asparagine, glutamine, serine, hydroxyproline or threonine that are present in the polypeptide backbone. This increases the amount of glucose and other hexoses that are released during the enzymatic treatment. This also reduces the amount of cellulase necessary in a typical hydrolysis.

As used herein, "cellulase" or "cellulase blend" include one enzyme or a mixture of enzymes that degrade cellulose. Typical cellulases include endocellulase or endoglucanase, exocellulase, exocello-biohydrolase, and cellobiase. "Hemicellulase" or "hemicellulase blend" include one enzyme or a mixture of enzymes that hydrolyze hemicellulose. Typical hemicellulases include but are not limited to β-xylanases, α-arabinofuranosidases, ferulic and acetyl esterases, α \& β-mannases, $\alpha \& \beta$-galactosidases, and β-galactomannanases.

The effective amount of cellulase, hemicellulase, and protease used in embodiments of the invention will vary with the type of enzymes used in the process, the ultrastructure and composition of the cell wall (which varies by plant type), the pretreatment or pre-processing step, and well as the as the desired yield. Commercial enzymes may be used according to their manufacturer's instructions.

Typical proteases for use in the invention include, for example, the aspartic protease from Aspergillus saitoi having the amino acid sequence give in SEQ ID NO:1. Other proteases having at least 50% or greater sequence identity with SEQ ID NO:1 may also be used, so long as the protease activity is conserved. Proteases suitable for use in embodiments of the invention may have a sequence identity with

SEQ ID NO: 1 of greater than 50%, greater than 60%, greater than 70%, greater than 80%, greater than 90%, greater than 95%, or greater than 98%, so long as protease activity is retained.

For example, other suitable proteases include but are not limited to those given in Table 1. The Aspergillus saitoi protease protein sequence was used to blast the NCBI sequence collection and identify proteases with 47% or higher sequence identity. The T. reesei protease was not identified because of too many gaps between the two protease sequences. Sequence identity percentages are based on percentage identity with SEQ ID NO:1. Sequence identity percentages were determined by BLAST in the CGC Wisconsin Genetics Software Packages, Version 10 (available from Accelrys Inc., 9685 Scranton Road, San Diego, Calif., USA). Alignments using BLAST programs can be performed using the default parameters.

TABLE 1

Sequence Identity comparison of protease from Aspergillus saito i with proteases from other organisms.			
Source	Sequence identity \%	Evalue	Sequence ID
aspergillopepsin A precursor [Aspergillus niger $]$	99\%	2e-180	SEQ ID NO: 2
preproproctase B	97\%	$3 \mathrm{e}-147$	SEQ ID NO: 3
[Aspergillus niger] aspartic proteinase aspergillopepsin I pepA-Aspergillus niger	97\%	$5 \mathrm{e}-141$	SEQ ID NO: 4
Aspergillopepsin A precutsor	96\%	9e-140	SEQ ID NO: 5
aspartic endopeptidase Pep1/aspergillopepsin F [Aspergillus fumigatus Af293]	71\%	1e-134	SEQ ID NO: 6
Aspergillus Oryzae	71\%	$4 \mathrm{e}-103$	SEQ ID NO: 7
Aspartic Proteinase propenicillopepsin-JT2 precursor [Penicillium janthinellum]	67\%	1e-109	SEQ ID NO: 8
acid proteinase	63\%	$4 \mathrm{e}-124$	SEQ ID NO: 9
[Monascus purpureus] aspartic proteinase [Penicillium	64\%	5e-119	SEQ ID NO: 10
roquefortii] aspartic protease [Phaeosphaeria	53\%	1e-94	SEQ ID NO: 11
nodorum] aspartyl protease [Trichoderma asperellum]	47\%	$5 \mathrm{e}-60$	SEQ ID NO: 12

Reaction conditions for hydrolysis including protease need not vary from those typically used for hydrolysis using cellulases or hemicellulases without proteases. For example, reaction temperatures may be, for example, but are not limited to between 25 to $80^{\circ} \mathrm{C}$., 40 to $70^{\circ} \mathrm{C}$. or 50 to $60^{\circ} \mathrm{C}$. Reaction times may be, for example, but are not limited to between 30 minutes to 48 hours, typically between 60 minutes and 24 hours. Reaction pH may be, for example, from 2.0 to 7.0 , more typically from 4.0 to 5.5 . Based on results obtained earlier and present knowledge of acid proteases, some of the reactions may proceed at lower $\mathrm{pH}(<5.0)$ and at higher temperature ($>55 \mathrm{C}$). With different fiber materials, the optimum enzyme performance may occur over a wide range of temperature and pH .

EXAMPLES
The examples below are only representative of some aspects of the invention. These examples should not be interpreted as limiting the invention in any way not explicitly stated in the claims.

Example 1

Example 1 shows hydrolysis of various fiber feedstocks with and without a protease. Percentages are calculated on a V/V basis. A mixture of 250 mg fiber feedstock in 5 ml of 100 mM citrate buffer at pH 5.0 , an enzyme solution of 0.2% cellulase mix (including 0.2\% GC-220, a Genencor cellulase blend; 0.2% CELLUCLAST L, a Novozymes cellulase blend, and 0.1\% Novozyme 28074), 0.2% hemicellulase mix (ULTRAFLO L, a Novozymes hemicellulase blend), and an aspartic protease from Aspergillus saitoi having SEQ ID NO: 1 were placed in a shaker at 55 .degree. C. for about 48 hours. Fiber feedstocks were prepared by grinding with a Wiley mill and sieving through a 40 mesh screen. Fiber feedstocks used in the experiment were corn fiber, corn stover, corn gluten feed, distillers' dried grains, distillers' dried grains with solubles, switchgrass, soyhulls, wheat chaff, and wheat straw.

A control experiment was also conducted for each of the fiber feedstocks. The control did not include the protease, but otherwise the conditions and amounts were the same.

Samples of each reaction were spun, and the supernatant was used for glucose analysis. Glucose concentration was obtained using an analyzer from YSI, Incorporated. Results are shown in Table 2. The amount of available glucose was increased over the control by up to 130%. The corn fiber showed a negligible improvement, with only a 0.5% increase. This negligible increase is believed to be due to the presence of a relatively high amount of starch in the corn fiber.

TABLE 2

Percent of glucose released from different feedstocks by cellulase and hemicellulases with and without the protease Glucose Released (\% of total dry weight)			
Fiber Streams	No Protease	Protease	\% Improvement
Corn Fiber	19.8	19.9	0.5
Corn Stover	15.2	17.4	14.5
Corn Gluten Feed	6.0	13.8	130.0
DDG	14	20.4	45.7
DDGS	6.8	12.2	79.4
Switchgrass	11	14	27.3
Soyhulls	22.0	32.4	47.3
Wheat Chaff	10.8	13.8	27.7
Wheat Straw	12.6	17	34.9

Patents, patent applications, publications, scientific articles, books, web sites, and other documents and materials referenced or mentioned herein are indicative of the levels of skill of those skilled in the art to which the inventions pertain, as of the date each publication was written, and all are incorporated by reference as if fully rewritten herein. Inclusion of a document in this specification is not an admission that the document represents prior invention or is prior art for any purpose.

The terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions, or any portions thereof, to exclude any equivalents now known or later developed, whether or not such equivalents are set forth or shown or described herein or whether or not such equiva-
lents are viewed as predictable, but it is recognized that various modifications are within the scope of the invention claimed, whether or not those claims issued with or without alteration or amendment for any reason. Thus, it shall be understood that, although the present invention has been specifically disclosed by preferred embodiments and optional features, modifications and variations of the inventions embodied therein or herein disclosed can be resorted to by those skilled in the art, and such modifications and variations are considered to be within the scope of the inventions disclosed and claimed herein.

Specific methods and compositions described herein are representative of preferred embodiments and are exemplary and not intended as limitations on the scope of the invention. Other objects, aspects, and embodiments will occur to those skilled in the art upon consideration of this specification, and are encompassed within the spirit of the invention as defined
by the scope of the claims. Where examples are given, the description shall be construed to include but not to be limited to only those examples.

It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention, and from the description of the inventions, including those illustratively set forth herein, it is manifest that various modifications and equivalents can be used to implement the concepts of the present invention without departing from its scope. A person of ordinary skill in the art will recognize that changes can be made in form and detail without departing from the spirit and the scope of the invention. The described embodiments are to be considered in all respects as illustrative and not restrictive. Thus, for example, additional embodiments are within the scope of the invention and within the following claims.

SEQUENCE LISTING

$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 394
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Aspergillus niger
$<400>$ SEQUENCE: 3

$<210>$ SEQ ID NO 4
$<211>$ LENGTH: 394
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Aspergillus niger
$<400>$ SEQUENCE: 4

$<210>$ SEQ ID NO 5
$<211>$ LENGTH: 320
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Aspergillus awamori
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: $(257) \ldots(257)$
$<223>$ OTHER INFORMATION: Xaa can be any naturally occurring amino acid
$<400>$ SEQUENCE: 5

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 395
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Aspergillus fumigatus
$<400>$ SEQUENCE: 6

$<210>$ SEQ ID NO 7
$<211>$ LENGTH: 390
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Aspergillus oryzae
$<400>$ SEQUENCE: 7

$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 394
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Penicillium janthinellum
$<400>$ SEQUENCE: 8

$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 395
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Monascus purpureus
$<400>$ SEQUENCE: 9

$\begin{aligned} & \text { Tyr } \\ & 145 \end{aligned}$	Gly	Asp	Gly	Ser	$\begin{aligned} & \text { Ser Ala } \\ & 150 \end{aligned}$	Ser	Gly A	Asp	$\begin{aligned} & \text { Val } \quad \text { T } \\ & 155 \end{aligned}$	Tyr	Lys	Asp	Th	$\begin{aligned} & \text { Val } \\ & 160 \end{aligned}$
Thr	Val	Ala	Gly	$\begin{aligned} & \text { Ile } \\ & 165 \end{aligned}$	Thr Ala	Pro	$\begin{array}{r} \text { Arg } \\ 1 \end{array}$	$\begin{aligned} & \text { Gln } \mathrm{A} \\ & 170 \end{aligned}$				la	$\begin{aligned} & \text { Ala } \\ & 175 \end{aligned}$	
Thr	Ile	Ser	$\begin{aligned} & \text { Ser } \\ & 180 \end{aligned}$	Glu	Phe Thr	Gln	$\begin{aligned} & \text { Asp } \\ & 185 \end{aligned}$	Lys A	Asn A	Asn	Asp	$\begin{aligned} & \text { Gly } \\ & 190 \end{aligned}$	Leu	Leu
Gly	Leu	$\begin{aligned} & \text { Ala } \\ & 195 \end{aligned}$	Phe S	Ser	Ser Ile	$\begin{aligned} & \text { Asn } \\ & 200 \end{aligned}$	Thr V	Val H	His P	Pro	$\begin{aligned} & \text { Lys } \\ & 205 \end{aligned}$			Thr
Thr	$\begin{aligned} & \operatorname{Trp} \\ & 210 \end{aligned}$	Phe	Asp	Thr	$\begin{aligned} \text { Val Lys } \\ 215 \end{aligned}$	Glu	Asp I	Leu A		$\begin{aligned} & \text { Ser } \\ & 220 \end{aligned}$	Pro			Ala
$\begin{aligned} & \text { Val } \\ & 225 \end{aligned}$	Ala	Leu	Lys	is	$\begin{aligned} & \text { Asn Ala } \\ & 230 \end{aligned}$	Pro	Gly T	Thr	Phe A 235	Asp	Phe	Gly	Tyr	$\begin{aligned} & \text { Val } \\ & 240 \end{aligned}$
Asp	Lys	Ser	Lys	$\begin{aligned} & \text { Tyr } \\ & 245 \end{aligned}$	Thr Gly	Ser	Leu T	$\begin{aligned} & \text { Thr } \\ & 250 \end{aligned}$	Tyr A	Ala	Asp	Val	$\begin{aligned} & \text { Asp } \\ & 255 \end{aligned}$	Asn
Ser	Gln	Gly	Phe 260	Trp	Gln Phe	Thr	Ala 265	Asp S	er T	Tyr	Ser	$\begin{aligned} & \text { Val } \\ & 270 \end{aligned}$	Gly	Ser
Gln	Ser	$\begin{aligned} & \text { Gly } \\ & 275 \end{aligned}$	Ser	Lys	Ser Ile	$\begin{aligned} & \text { Val } \\ & 280 \end{aligned}$	Gly	Ile	Ala A	Asp	$\begin{aligned} & \text { Thr } \\ & 285 \end{aligned}$	Gly	Thr	Thr
Leu	$\begin{aligned} & \text { Leu } \\ & 290 \end{aligned}$	Leu	Leu	Pro	$\begin{array}{r} \text { Asp } \begin{array}{r} \text { Asp } \\ 295 \end{array}, ~ \end{array}$	Val	Val	Glu	$\begin{array}{cc} \text { Ala } & \mathrm{T} \\ & 3 \end{array}$	$\begin{aligned} & \text { Tyr } \\ & 300 \end{aligned}$	Tyr	Lys		Val
$\begin{aligned} & \text { Glu } \\ & 305 \end{aligned}$	Gly	Ala	Glu	sn	$\begin{aligned} & \text { Asp Ser } \\ & 310 \end{aligned}$	Gln	Ala	Gly	$\begin{aligned} & \text { Gly T } \\ & 315 \end{aligned}$	Tyr	al	he	Pro	$\begin{aligned} & \text { Cys } \\ & 320 \end{aligned}$
Asp	Ser	Gln	Leu	$\begin{aligned} & \text { Pro } \\ & 325 \end{aligned}$	Ser Phe	Thr	$\begin{array}{r} \text { Ala } \mathrm{V} \\ 3 \end{array}$	$\begin{aligned} & \text { Val } \\ & 330 \end{aligned}$	Ile A	Asn	Gly	Tyr	$\begin{aligned} & \text { Ser } \\ & 335 \end{aligned}$	Ala
Val	Val	Pro	$\begin{aligned} & \text { Gly } \\ & 340 \end{aligned}$	Ser	Leu Ile	Asn	$\begin{aligned} & \text { Tyr } A \\ & 345 \end{aligned}$	Ala	Ser A	Ala	Gly	Asp 350	Gly	Ser
Asn	Asn	$\begin{aligned} & \text { Cys } \\ & 355 \end{aligned}$	Leu	Gly	Gly Ile	$\begin{aligned} & \mathrm{Gln} \\ & 360 \end{aligned}$	Ser A	Asp	Gln	Gly	$\begin{aligned} & \text { Ile } \\ & 365 \end{aligned}$	Gly	Gln	Ala
Ile	$\begin{aligned} & \text { Phe } \\ & 370 \end{aligned}$	Gly	Asp	Ile	Phe Leu 375	Lys	Ser	Gln		$\begin{aligned} & \text { Val } \\ & 380 \end{aligned}$	Val	Phe		Ala
$\begin{aligned} & \text { Asp } \\ & 385 \end{aligned}$	Gly	Pro	Arg	Leu	$\begin{aligned} & \text { Gly Phe } \\ & 390 \end{aligned}$	Ala	Pro	Gln	$\begin{aligned} & \text { Ala } \\ & 395 \end{aligned}$					

$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 397
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Penicillium roqueforti
$<400>$ SEQUENCE: 10

		115				120					125			
Val	$\begin{aligned} & \mathrm{Gly} \\ & 130 \end{aligned}$	Ser	Leu Gl_{Y}	Thr	$\begin{aligned} & \text { Lys } \\ & 135 \end{aligned}$	Leu	Ser	Gly	Ala	$\begin{aligned} & \text { Ser } \\ & 140 \end{aligned}$	Trp	Ser	Ile	
$\begin{aligned} & \text { Tyr } \\ & 145 \end{aligned}$	Gly	Asp	Gly Ser	$\begin{aligned} & \text { Ser } \\ & 150 \end{aligned}$	Ala	Ser	Gly	Asp	Val 155	Tyr	Lys	Asp	Thr	$\begin{aligned} & \text { Val } \\ & 160 \end{aligned}$
Thr	Val	Gly	$\begin{aligned} & \text { Gly } \mathrm{Val} \\ & 165 \end{aligned}$	Lys	Ala	Thr	Gly	$\begin{aligned} & \text { Gln } \\ & 170 \end{aligned}$		Val		Ala	$\begin{aligned} & \text { Ala } \\ & 175 \end{aligned}$	
Lys	Ile	er	$\begin{aligned} & \text { Ser Gln } \\ & 180 \end{aligned}$	he	」eu	Gln	$\begin{aligned} & \text { Asp } \\ & 185 \end{aligned}$	Lys		Asn	Asp	$\begin{aligned} & \text { Gly } \\ & 190 \end{aligned}$	Leu	Leu
Gly	Met	$\begin{aligned} & \text { Ala } \\ & 195 \end{aligned}$	Phe Ser			$\begin{aligned} & \text { Asn } \\ & 200 \end{aligned}$		Val		Pro	$\begin{aligned} & \text { Thr } \\ & 205 \end{aligned}$	Pro	Gln	Lys
Thr	Phe 210	Phe	Asp Thr	al	$\begin{aligned} & \text { Lys } \\ & 215 \end{aligned}$		Ser	Leu	$\mathrm{Gl} \mathrm{Y}$	$\begin{aligned} & \text { Glu } \\ & 220 \end{aligned}$	Pro	Leu	Phe	Ala
$\begin{aligned} & \text { Val } \\ & 225 \end{aligned}$	Thr	Leu	Gln Gly	$\begin{aligned} & \text { Thr } \\ & 230 \end{aligned}$	Gly	Arg	Pro	Trp	His 235	Leu	Arg	Phe	Gly	$\begin{aligned} & \text { Tyr } \\ & 240 \end{aligned}$
Ile	Asp	Ser	$\begin{array}{r} \text { Asp Lys } \\ 245 \end{array}$	Tyr	Thr	Gly	Thr	$\begin{aligned} & \text { Leu } \\ & 250 \end{aligned}$	Ala	Tyr	Ala	Asp	$\begin{aligned} & \mathrm{Val} \\ & 255 \end{aligned}$	Asp
Asp	Ser	Asp	Gly Phe 260	Trp	Ser	Phe	$\begin{aligned} & \text { Thr } \\ & 265 \end{aligned}$	Ala	Asp	Ser	Tyr	$\begin{aligned} & \text { Lys } \\ & 270 \end{aligned}$	Ile	Gly
Thr	Gly	$\begin{aligned} & \text { Ala } \\ & 275 \end{aligned}$	Ala Gly	Lys	Ser	$\begin{aligned} & \text { Ile } \\ & 280 \end{aligned}$	Thr	Gly	Ile	Ala	$\begin{aligned} & \text { Asp } \\ & 285 \end{aligned}$	Thr	Gly	
Thr	$\begin{aligned} & \text { Leu } \\ & 290 \end{aligned}$	Leu	Leu Leu	Asp	$\begin{aligned} & \text { Ser } \\ & 295 \end{aligned}$	Ser	Ile	Val	Thr	$\begin{aligned} & \text { Gly } \\ & 300 \end{aligned}$	Leu	Leu	Gln	Glu
$\begin{aligned} & \text { Gly } \\ & 305 \end{aligned}$	Tyr	ro	Gly Ser	$\begin{aligned} & \text { Gln } \\ & 310 \end{aligned}$	Asn	Ser		Ser	$\begin{aligned} & \text { Ala } \\ & 315 \end{aligned}$	Gly	Gly	Tyr	Ile	$\begin{aligned} & \text { Phe } \\ & 320 \end{aligned}$
Pro	Cys	Ser	$\begin{array}{r} \text { Ala Thr } \\ 325 \end{array}$	Leu		Asp	Phe	$\begin{aligned} & \text { Thr } \\ & 330 \end{aligned}$	Val	Thr	Ile	Asn	$\begin{aligned} & \text { Gly } \\ & 335 \end{aligned}$	Tyr
Asp	Ala	Val	$\begin{aligned} & \text { Val Pro } \\ & 340 \end{aligned}$	Gly	Lys	Tyr	$\begin{aligned} & \text { Ile } \\ & 345 \end{aligned}$	Asn		Ala	Pro	$\begin{aligned} & \text { Val } \\ & 350 \end{aligned}$	Ser	
Gly	Ser	$\begin{aligned} & \text { Ser } \\ & 355 \end{aligned}$	Ser Cys	Tyr	Gly	$\begin{aligned} & \text { Gly } \\ & 360 \end{aligned}$	Ile	Gln	Ser	Asn	$\begin{aligned} & \text { Ser } \\ & 365 \end{aligned}$	Gly	Ile	Gly
Phe	$\begin{aligned} & \text { Ser } \\ & 370 \end{aligned}$	Ile	Phe Gly	Asp	$\begin{aligned} & \text { Ile } \\ & 375 \end{aligned}$	Phe	Leu	Lys	Ser	$\begin{aligned} & \mathrm{Gln} \\ & 380 \end{aligned}$	Tyr	Val		Phe
$\begin{aligned} & \text { Asp } \\ & 385 \end{aligned}$	Ser	Glu	Gly Pro	$\begin{aligned} & \text { Arg } \\ & 390 \end{aligned}$	Leu	Gly	Phe	Ala	$\begin{aligned} & \text { Ala } \\ & 395 \end{aligned}$	Gln	Ala			

$<210>$ SEQ ID NO 11
$<211>$ LENGTH: 406
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Phaeosphaeria nodorum
$<400>$ SEQUENCE: 11

$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 405
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Trichoderma asperellum
$<400>$ SEQUENCE: 12

We claim:

1. A method for increasing the amount of glucose and other sugar and peptides released from a fiber containing corn or soy bean byproduct comprising:
(a) reacting a fiber containing corn or soy bean byproduct selected from the group consisting of corn gluten feed (CGF), distillers dried grains (DDG), distillers dried grains with solubles (DDGS), and soy hulls with a mixture of reactants comprising at least one protease and at
least one member of the group consisting of cellulase and hemicellulase; and
(b) obtaining a reaction product from said fiber containing corn or soy byproduct and said mixture of reactants, wherein a wt/wt ratio of glucose/fiber is greater in the reaction product than the $\mathrm{wt} / \mathrm{wt}$ ratio of glucose/fiber obtained from reaction of the fiber containing corn or soy processing byproduct under the same conditions as the reaction of step (a), but excluding protease, and
(c) forming an animal feed from the reaction product.
2. The method of claim $\mathbf{1}$, wherein said mixture does not include amylase.
3. The method of claim 1 , wherein said protease is an acid fungal protease.
4. The method of claim 1, wherein said protease has an amino acid sequence at least 95% identical to the amino acid sequence of SEQ ID NO: 1 .
5. The method of claim 1, wherein said protease is selected from the group consisting of Aspergillus saitoi aspartic protease, Penicillium acid protease, Mucor acid protease, Monascus acid protease, Trichoderma acid protease, Phaeosphaeria acid protease, and Rhizopus acid protease.
6. The method of claim 4, wherein said protease is Aspergillus saitoi aspartic protease, said Aspergillus saitoi aspartic protease having the amino acid sequence of SEQ ID NO: 1.
7. The method of claim 1, wherein said corn or soy bean byproduct is selected from the group consisting of CGF, DDG, and DDGS.
8. The method of claim 1, wherein said fiber feedstock comprises less than 20% starch by weight.
9. The method of claim 1 , wherein said fiber feedstock comprises less than 10% starch by weight.
$\mathbf{1 0}$. The method of claim 1, wherein said fiber feedstock comprises less than 5% starch by weight.
10. The method of claim 1, wherein said fiber feedstock comprises 0% starch by weight.
11. The method of claim 1 , wherein said mixture of reactants comprises cellulase, and wherein said cellulase comprises one or more of endo- $\beta-1,4$ glucanases, exo-cellobiohydrolases, β-glucosidase, and exoglucanases.
12. The method of claim 1, wherein said mixture of reactants comprises hemicellulase, and wherein said hemicellulase comprises one or more of endo-1,4- β-xylanase, β-xylosidase, β-endomannanase, β-mannosidase, pectin lyase,
pectate lyase, α-L-arabinofuransidase, α-glucuronidases, α / β-galactosidases, and several esterases.
13. The method of claim 1 , wherein said reaction product further comprises arabinose, xylose, galactose, mannose, cellulobiose, maltose, and maltotriose.
14. The method of claim 1 , wherein the $\mathrm{wt} / \mathrm{wt}$ ratio of glucose/fiber is greater in the reaction product than the $\mathrm{wt} / \mathrm{wt}$ ratio of glucose/fiber amount of glucose obtained from reaction of the fiber containing corn or soy byproduct under the same conditions as the reaction of step (a), but excluding protease by at least 10%.
15. The method of claim 15 , wherein the $\mathrm{wt} / \mathrm{wt}$ ratio of glucose/fiber is greater in the reaction product than the $\mathrm{wt} / \mathrm{wt}$ ratio of glucose/fiber amount of glucose obtained from reaction of the fiber containing corn or soy byproduct under the same conditions as the reaction of step (a), but excluding protease by at least 20%.
16. The method of claim 16, wherein the wt/wt ratio of glucose/fiber is greater in the reaction product than the $\mathrm{wt} / \mathrm{wt}$ ratio of glucose/fiber amount of glucose obtained from reaction of the fiber containing corn or soy byproduct under the same conditions as the reaction of step (a), but excluding protease by at least 100%.
17. The method of claim 1, wherein said protease has an amino acid sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO:2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO: 12.
18. A method for obtaining a solid hydrolyzed fiber, comprising: (a) preparing a reaction product according to claim 1; and (b) separating said reaction product into a solid hydrolyzed fiber fraction and a liquid fraction, wherein at least one of the hydrolyzed fiber fraction the liquid fraction are used to form the animal feed.
